Uniwersytet Bielsko-Bialski - Central Authentication SystemYou are not logged in | log in

material engineering (IM-SI7O)

(in Polish: Inżynieria materiałowa studia inżynierskie)
first-cycle
full time, 3,5 years of studies (7 terms)
Language: Polish

Dla kogo inżynieria materiałowa?

Inżynieria materiałowa i nowe materiały są podstawą rozwoju wielu gałęzi gospodarki. Nowe materiały powstają w laboratoriach i tam właśnie głównie pracują nasi absolwenci. Studiując inżynierię materiałową zdobędziesz wiedzę na temat procesów wytwarzania i przetwarzania materiałów na potrzeby m.in. przemysłu motoryzacyjnego, budowlanego czy medycznego. Do studiowania inżynierii materiałowej zapraszamy szczególnie osoby zainteresowane nowinkami technologicznymi, odkryciami naukowymi, które lubią eksperymentować i chcą wziąć udział w rozwoju nauki i tworzeniu innowacyjnych rozwiązań. 

Opis kierunku

Studia I stopnia (profil ogólnoakademicki):

-specjalność: badania materiałowe w kontroli jakości,

- specjalność: recykling i materiały zrównoważonego rozwoju. 

Interesujesz się nowymi materiałami i procesami produkcyjnymi? Inżynieria materiałowa jest interdyscyplinarną dziedziną obejmującą projektowanie, wytwarzanie i badanie nowych materiałów. Wykorzystując szeroki wachlarz metod analitycznych, inżynieria materiałowa pozwala zrozumieć strukturę, właściwości i zachowanie materiałów w warunkach pracy. Obiektem zainteresowania inżynierii materiałowej są głównie ciała stałe, w tym m.in. metale, stopy, materiały ceramiczne, tworzywa sztuczne, czy kompozyty, jak również procesy wytwarzania i przetwarzania tych materiałów.

Intensywnie rozwijającymi się gałęziami inżynierii materiałowej są mikro- i nanotechnologie, wśród których na szczególną uwagę zasługują technologie druku 3D jak również nanokompozyty, w tym nanokompozyty oparte na grafenie, w których ATH jest liderem.

Inżynieria materiałowa leży u podstaw rozwoju m.in. nowoczesnej motoryzacji, lotnictwa, technologii kosmicznych, budownictwa, czy też medycyny.

Studia na kierunku inżynieria materiałowa otwierają szerokie perspektywy zawodowe nie tylko w naszym regionie, gdzie wyjątkowo mocno rozwinięte są sektory motoryzacyjny i przetwórstwa tworzyw sztucznych, to studia uniwersalne, które otwierają szerokie perspektywy rozwoju. 

Miejscami pracy naszych absolwentów są

  1. sektor przetwórstwa tworzyw sztucznych
  2. laboratoria kontroli jakości w przedsiębiorstwach produkcyjnych
  3. działy badawczo-rozwojowe w firmach produkcyjnych
  4. przedsiębiorstwa przetwarzające metale i stopy
  5. firmy produkujące części i podzespoły dla motoryzacji
  6. przedsiębiorstwa produkujące opakowania
  7. sektor produkcji materiałów budowlanych
  8. przedsiębiorstwa gospodarki odpadami

Dlaczego studia na kierunku inżynieria materiałowa na Uniwersytecie Bielsko-Bialskim są wyjątkowe?

– organizacja semestru umożliwia połączenie studiów ze zdobywaniem doświadczenia zawodowego, zajęcia są planowane w taki sposób, żeby nasi studenci mogli 2 dni w tygodniu poświęcić na pracę, bądź rozwijanie swoich pasji,
– program studiów obejmuje szeroki zakres zajęć laboratoryjnych – uczysz się eksperymentując,
– ściśle współpracujemy z przedsiębiorstwami, dzięki czemu umożliwiamy zdobycie praktyki czy stażu w wielu różnorodnych sektorach produkcyjnych,
– studenci mają możliwość podjęcia pracy w projektach naukowo-badawczych realizowanych na naszym Wydziale, mogą tym samym rozwijać swoje zainteresowania naukowe,
– wspieramy naszych studentów w rozwijaniu zainteresowań, umożliwiając im udział w konferencjach studenckich kół naukowych, konkursach i innych inicjatywach,
– nasi nauczyciele akademiccy są zawsze do dyspozycji naszych studentów, ponieważ żyją pracą ze studentami!

Dlaczego warto studiować inżynierię materiałową? Zobacz sam.

  

Rekrutacja - krok po kroku - jak zapisać się na studia

 https://rekrutacja.ath.bielsko.pl/krok-po-kroku-jak-zapisac-sie-na-studia

Informacje dla cudzoziemców: krok po kroku - jak zapisać się na studia

Terminy rekrutacji - rok akademicki 2024/2025

https://rekrutacja.ubb.edu.pl/terminy-rekrutacji-rok-akademicki-2024-2025

Terminy rekrutacji na studia wyższe podejmowane przez cudzoziemców, na zasadach innych niż obowiązujące obywateli polskich, rozpoczynające się od semestru zimowego: https://rekrutacja.ubb.edu.pl/terminy-rekrutacji-dla-cudzoziemcow

Przedmioty będące podstawą kwalifikacji kandydatów

https://rekrutacja.ath.bielsko.pl/studia-i-stopnia/przedmioty-bedace-podstawa-kwalifikacji-kandydatow

Zasady przyjęć - wskaźnik rekrutacji

https://rekrutacja.ath.bielsko.pl/zasady-przyjec

Informacja dla cudzoziemców: zasady przyjęcia na studia cudzoziemców

Opłata rekrutacyjna

Zgodnie z § 38 rozporządzenia Ministra Nauki i Szkolnictwa Wyższego z dnia 27 września 2018 r. w sprawie studiów (Dz. U. 2023, poz. 2787) opłata za przeprowadzenie rekrutacji na studia wynosi 85 zł
Indywidualne konto do wpłaty opłaty za postępowanie związane z przyjęciem na studia, po dokonaniu zgłoszenia rekrutacyjnego w Internetowej Rekrutacji Kandydatów, jest wskazane w zakładce: Moje konto/ Płatności.
Tytuł przelewu: Opłata rekrutacyjna oraz imię i nazwisko kandydata.

Wymagane dokumenty do Komisji Rekrutacyjnej - po zaklasyfikowaniu kandydata na studia

https://rekrutacja.ath.bielsko.pl/wazne-informacje/wymagane-dokumenty-studia-i-stopnia

Informacja dla cudzoziemców: wymagane dokumenty studia I stopnia (inżynierskie)

Cudzoziemcy - opłaty na studiach stacjonarnych w języku polskim

https://studia.ubb.edu.pl/oplaty_r_ak_2024_2025_cudzoziemcy.pdf

https://cudzoziemcy/zwolnienie-z-oplat-za-studia

Program studiów (do wglądu)

Program studiów dla specjalności: badania materiałowe w kontroli jakości

Program studiów dla specjalności: recykling i materiały zrównoważonego rozwoju

Qualification awarded:

(in Polish) inżynier

Access to further studies:

Possibility to apply for admission to second-cycle studies of the same or a related field and to postgraduate studies.

Professional status:

The graduate of materials science has knowledge in the field of materials science, ceramics, plastics and composites, processing of plastics and composites, methods of testing and shaping the properties of materials in terms of their intended use, selection and design of materials for production and design of technical products, hygienic engineering of textile products, dressings and biomaterials. Has skills in the use of knowledge at work, as well as human resource management in enterprises related to broadly understood materials engineering, conducting research and laboratory works useful in modern materials engineering in the field of material production technology and physicochemical analyzes of modern materials, the use of basic information technologies in the field of data acquisition, processing and presentation; using professional literature and other sources of information, including in foreign languages.

Learning outcomes

"Learning outcomes for the field of materials engineering, conducted at first-cycle studies with a general academic education profile, in accordance with the resolution of the Senate of the University of Bielsko-Biała No. 943/09/V/2013 of 24 September 2013 on the approval of the learning outcomes for studies in materials engineering at the Faculty of Materials and Environmental Sciences, first-cycle studies general academic profile. Learning outcomes are knowledge, skills and social competences acquired in the learning process.
• In terms of knowledge, the graduate knows and understands:
- has knowledge in the field of mathematics including: logic, algebra, analytical geometry, calculus and integral in relation to the description of simple engineering issues, which makes it possible to describe and understand basic phenomena in the field of materials engineering.
- has knowledge in physics including mechanics, thermodynamics, optics, electricity and magnetism, nuclear and solid state physics related to materials and their characterization, and material technologies.
- knows the basic concepts and laws of general, inorganic chemistry necessary to understand the hierarchical structure of matter and material properties and to understand the interactions of material with the environment; knows the basic properties of the most important chemical elements, the forms of their occurrence and obtaining.
- has knowledge in the field of physical chemistry including: the structure of matter; elements of chemical thermodynamics; statics and kinetics of chemical reactions.
- has the knowledge in the field of organic chemistry and chemistry of macromolecular compounds necessary to understand the interactions of the material with the environment.
- has knowledge in the field of chemistry, physical chemistry and physics of polymers, methods of polymer production and formation of polymer products.
- has a well-established knowledge of the basic groups of engineering materials, taking into account their structure and chemical composition, physicochemical and technological properties and their scope of application.
- has a detailed knowledge of the principles of carrying out physical measurements and chemical experiments, the elaboration of their results, the types of measurement uncertainties, the ways of determining and expressing them.
- has knowledge of the basics of materials science including: structural structure of materials, physical and phase transformations, phase equilibrium systems, necessary to understand the process of shaping the morphology of the material.
- has knowledge in the field of mechanics and strength of materials including: statics, kinematics and dynamics; stresses, deformations and displacements; strength hypotheses and fracture mechanisms, necessary to understand the strength of structural materials.
- has knowledge in the field of electrical engineering including: construction of basic electrical and electronic systems, electrical measurement, necessary to understand functional electrical systems and methods of measuring basic electrical quantities.
- has knowledge in the field of computer science including knowledge of basic utility and engineering programs necessary to perform basic mathematical, engineering and data processing calculations and create engineering documentation, including in particular CAD / CAM systems used in processes related to materials engineering.
- has the knowledge in the field of chemical structure, structure and morphology of metallic, ceramic, polymeric and composite materials necessary to understand the properties of materials.
- has knowledge in the field of basic methods of characterizing the chemical structure, structure and morphology of materials necessary for the selection of methods of characterizing materials.
- has elementary knowledge in the field of intellectual property protection, patent law and labor law.
- has elementary knowledge in the field of management, including quality management and running a business.
- knows the general principles of creating and developing forms of individual entrepreneurship, using knowledge in the field of study.
- has knowledge of development trends and the most important new developments in the field of materials engineering.
- has knowledge of advanced techniques for the manufacture of materials, methods of their testing, measurement, analysis and description of the performance of materials.
- has theoretically based, detailed knowledge related to the methods of characterization of the chemical composition and structure of engineering materials, including test methods using: spectrometry, microscopy, structural X-ray, analysis and description of the functional properties of structural materials and methods of detecting material defects by means of destructive and non-destructive tests
- has an orderly, theoretically supported knowledge in the field of functional materials.
- has theoretically underpinned, detailed knowledge related to technical coatings, including gradient and multiphase.
- has a structured knowledge of natural polymers and polymeric materials, their properties and applications.
• In terms of skills, the graduate is able to:
- knows how to use mathematical tools in technical applications.
- can use the learned laws and methods of physics to solve typical engineering tasks.
- can carry out simple physical measurements and chemical experiments, develop and present their results, as well as draw conclusions.
- can independently conduct basic operations and chemical processes in a chemical laboratory; can carry out complex calculations in the field of stoichiometry, concentrations of solutions and equilibrium in electrolyte solutions.
- can explain the structure and properties of inorganic compounds, organic compounds and polymers, use nomenclature, classifications, recording of the reaction equation, chemical calculations.
- speaks a foreign language sufficiently to communicate and to read with comprehension short technical texts; can obtain information from literature, databases and other sources, also in a foreign language; has language skills in accordance with the requirements set out for level B2 of the Common European Framework of Reference for Languages.
- has the preparation necessary to work in an industrial environment and has an elementary ability to use legal regulations and economic and financial instruments in engineering activities.
- can use IT tools, including computer programs useful in engineering practice.
- can assess the usefulness of methods and tools used to solve a simple engineering task, plan and conduct experiments, interpret the results obtained and draw conclusions.
- can prepare and present a well-documented study of a problem or a presentation on selected issues in the field of materials engineering.
- can assess the risks associated with the use of products used in technological processes and apply the principles of health and safety
- has the ability to critically assess the functioning of existing technical solutions, in particular equipment, facilities, systems and services.
- has the ability to self-educate, m.in. in order to improve professional competences.
- can use properly selected methods and devices to characterize the material or product.
- can select materials for engineering applications depending on the structure, properties and conditions of use.
- can design a simple technological process in accordance with the given specification, assess its correctness using appropriate methods of techniques and tools.
- can make a preliminary economic analysis and pre-estimate the costs of the planned engineering task.
• In the field of social competences, the graduate is ready to:
- understands the need and knows the possibilities of continuous education, improvement of professional, personal and social competences.
- is aware of the importance and understands the non-technical aspects and effects of the activity of an engineer - a materials technologist, including its impact on the environment and the related responsibility for the decisions made.
- is aware of the importance of professional behavior, compliance with the rules of professional ethics and respect for the diversity of views and cultures.
- is aware of the responsibility for their own work and readiness to submit to the principles of working in a team and take responsibility for jointly performed tasks.
- is able to think and act in an entrepreneurial way, combining the knowledge learned with practice.
- understands the need to formulate and communicate to the public - m.in through the mass media - information about the beneficial and unfavorable aspects of activities related to the achievements of materials engineering, is able to convey such information in a commonly understood way.
- is able to communicate as part of a team performing interdisciplinary tasks.
- is aware of the role of information exchange in the modern world, especially regarding the latest developments in science and technology."

Admission procedures:

Visit the following page for details on admission procedures: https://irk.ubb.edu.pl/